SnoN is a cell type-specific mediator of transforming growth factor-beta responses.

نویسندگان

  • Krishna P Sarker
  • Sylvia M Wilson
  • Shirin Bonni
چکیده

The transforming growth factor-beta (TGF-beta) family of secreted proteins have pleiotropic functions that are critical to normal development and homeostasis. However, the intracellular mechanisms by which the TGF-beta proteins elicit cellular responses remain incompletely understood. The Smad proteins provide a major means for the propagation of the TGF-beta signal from the cell surface to the nucleus, where the Smad proteins regulate gene expression leading to TGF-beta-dependent cellular responses including the inhibition of cell proliferation. Recent studies have suggested that a nuclear Smad-interacting protein termed SnoN, when overexpressed in cells, suppresses TGF-beta-induced Smad signaling and TGF-beta inhibition of cell proliferation. However, the physiologic function of endogenous SnoN in TGF-beta-mediated biological responses remained to be elucidated. Here, we determined the effect of genetic knock-down of SnoN by RNA interference on TGF-beta responses in mammalian cells. Unexpectedly, we found that SnoN knock-down specifically inhibited TGF-beta-induced transcription in the lung epithelial cell line Mv1Lu but not in HeLa or HaCaT cells. SnoN knock-down was also found to block TGF-beta-dependent cell cycle arrest in Mv1Lu cells. Collectively, these data indicate that rather than suppressing TGF-beta-induced responses, endogenous SnoN acts as a positive mediator of TGF-beta-induced transcription and cell cycle arrest in lung epithelial cells. Our study also shows that SnoN couples the TGF-beta signal to gene expression in a cell-specific manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transforming growth factor-beta regulator SnoN modulates mammary gland branching morphogenesis, postlactational involution, and mammary tumorigenesis.

SnoN is an important negative regulator of transforming growth factor-beta (TGF-beta) signaling that was originally identified as a transforming oncogene in chicken embryonic fibroblasts. Both pro-oncogenic and antioncogenic activities of SnoN have been reported, but its function in normal epithelial cells has not been defined. In the mouse mammary gland, SnoN is expressed at relatively low lev...

متن کامل

Inability of transforming growth factor-beta to cause SnoN degradation leads to resistance to transforming growth factor-beta-induced growth arrest in esophageal cancer cells.

It is well established that loss of a growth inhibitory response to transforming growth factor-beta (TGF-beta) is a common feature of epithelial cancers including esophageal cancer. However, the molecular basis for the abrogation of this key homeostatic mechanism is poorly understood. In esophageal cancer cell lines that are resistant to TGF-beta-induced growth inhibition, TGF-beta also fails t...

متن کامل

Evaluation of Specific Purified TCR Effect on the Immunoregulatory Potential of TGF-beta

Transforming growth factor beta (TGF-b) is a mediator released by nearly all cell types. It has suppression activity on the immune system, but exactly how this effect is carried out is not clear. Previous experiments showed that IgG interacts with or carriers active TGF-b, that could suppresses cytotoxic T-cell responses to an immunogenic tumor in mice. Since T cell receptor (TCR) has structura...

متن کامل

SnoN and Ski protooncoproteins are rapidly degraded in response to transforming growth factor beta signaling.

Transforming growth factor beta (TGF-beta) regulates a variety of physiologic processes, including growth inhibition, differentiation, and induction of apoptosis. Some TGF-beta-initiated signals are conveyed through Smad3; TGF-beta binding to its receptors induces phosphorylation of Smad3, which then migrates to the nucleus where it functions as a transcription factor. We describe here the asso...

متن کامل

Loss of c-myc repression coincides with ovarian cancer resistance to transforming growth factor beta growth arrest independent of transforming growth factor beta/Smad signaling.

Many epithelial carcinomas, including ovarian, are refractory to the antiproliferative effects of transforming growth factor (TGF) beta. In some cancers, TGF-beta resistance has been linked to TGF-beta receptor II (TbetaR-II) and Smad4 mutations; however, in ovarian cancer, the mechanism of resistance remains unclear. Primary ovarian epithelial cell cultures were used as a model system to deter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 13  شماره 

صفحات  -

تاریخ انتشار 2005